Interface Optimization and Performance Enhancement of Er2O3-Based MOS Devices by ALD-Derived Al2O3 Passivation Layers and Annealing Treatment

Author:

Wu Qiuju1,Yu Qing2,He Gang3,Wang Wenhao3,Lu Jinyu3,Yao Bo1ORCID,Liu Shiyan1,Fang Zebo1

Affiliation:

1. Zhejiang Engineering Research Center of MEMS, Shaoxing University, Shaoxing 312000, China

2. Semiconductor Manufacturing Electronics (Shaoxing) Corporation, Shaoxing 312000, China

3. School of Materials Science and Engineering, Anhui University, Hefei 230601, China

Abstract

In this paper, the effect of atomic layer deposition (ALD)-derived Al2O3 passivation layers and annealing temperatures on the interfacial chemistry and transport properties of sputtering-deposited Er2O3 high-k gate dielectrics on Si substrate has been investigated. X-ray photoelectron spectroscopy (XPS) analyses have showed that the ALD-derived Al2O3 passivation layer remarkably prevents the formation of the low-k hydroxides generated by moisture absorption of the gate oxide and greatly optimizes the gate dielectric properties. Electrical performance measurements of metal oxide semiconductor (MOS) capacitors with different gate stack order have revealed that the lowest leakage current density of 4.57 × 10−9 A/cm2 and the smallest interfacial density of states (Dit) of 2.38 × 1012 cm−2 eV−1 have been achieved in the Al2O3/Er2O3/Si MOS capacitor, which can be attributed to the optimized interface chemistry. Further electrical measurements of annealed Al2O3/Er2O3/Si gate stacks at 450 °C have demonstrated superior dielectric properties with a leakage current density of 1.38 × 10−9 A/cm2. At the same, the leakage current conduction mechanism of MOS devices under various stack structures is systematically investigated.

Funder

National Natural Science Foundation of China

Zhejiang Province Public Welfare Technology Application Research Project

Anhui Project

Open Fund Project of Zhejiang Engineering Research Center of MEMS in Shaoxing University

Science and Technology Planning Project of Shaoxing City

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3