Climatological Aspects of Active Fires in Northeastern China and Their Relationship to Land Cover

Author:

Sun LiORCID,Yang LeiORCID,Xia XiangaoORCID,Wang Dongdong,Zhang TieningORCID

Abstract

Biomass burning (BB) is a driving force for heavy haze in northeastern China (NEC) and shows distinct seasonal features. However, little is known about its climatological aspects, which are important for regional BB management and understanding BB effects on climate and environment. Here, the climatological characteristics of active fires and their dependence on land cover in NEC were studied using Moderate Resolution Imaging Spectroradiometer (MODIS) products. Moreover, the influence of meteorological factors on fire activities was explored. The number of fires was found to have increased significantly from 2003 to 2018; and the annual total FRP (FRPtot) showed a generally consistent variation with fire counts. However, the mean fire radiative power for each spot (FRPmean) decreased. Fire activity showed distinctive seasonal variations. Most fires and intense burning events occurred in spring and autumn. Spatially, fires were mainly concentrated in cropland areas in plains, where the frequency of fires increased significantly, especially in spring and autumn. The annual percentage of agricultural fires increased from 34% in 2003 to over 60% after 2008 and the FRPtot of croplands increased from 12% to over 55%. Fires in forests, savannas, and grasslands tended to be associated with higher FRPmean than those in croplands. Analysis indicated that the increasing fire count in NEC is mainly caused by agricultural fires. Although the decreasing FRPmean represents an effective management of BB in recent years, high fire counts and FRPtot in croplands indicate that the crop residue burning cannot be simply banned and a need instead for effective applications. More efforts should be made on clean utilization of straw. The accumulation of dry biomass, high temperature, and low humidity, and weak precipitation are conducive to the fire activities. This study provides a comprehensive analysis of BB in NEC and provides a reference for regional BB management and control.

Funder

Natural Science Founding of Liaoning Provinces

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3