Affiliation:
1. Environmental Markets Lab, University of California, Santa Barbara, CA 93106, USA
Abstract
Crop residue burning (CRB) is a major source of air pollution in many parts of the world, especially Asia. Policymakers, practitioners, and researchers have invested in measuring the extent and impacts of burning and developing interventions to reduce its occurrence. However, any attempt to measure burning, in terms of its extent, impact, or the effectiveness of interventions to reduce it, requires data on where burning occurs. These data are challenging to collect in the field, both in terms of cost and feasibility, because crop-residue fires are short-lived, each covers only a small area, and evidence of burning disappears once fields are tilled. Remote sensing offers a way to observe fields without the complications of on-the-ground monitoring. However, the same features that make CRB hard to observe on the ground also make remote-sensing-based measurements prone to inaccuracies. The extent of crop burning is generally underestimated due to missing observations, while individual plots are often falsely identified as burned due to the local dominance of the practice, a lack of training data on tilled vs. burned plots, and a weak signal-to-noise ratio that makes it difficult to distinguish between the two states. Here, we summarize the current literature on the measurement of CRB and flag five common pitfalls that hinder analyses of CRB with remotely sensed data: inadequate spatial resolution, inadequate temporal resolution, ill-fitted signals, improper comparison groups, and inadequate accuracy assessment. We take advantage of data from ground-based monitoring of CRB in Punjab, India, to calibrate and validate analyses with PlanetScope and Sentinel-2 imagery and illuminate each of these pitfalls. We provide tools to assist others in planning and conducting remote sensing analyses of CRB and stress the need for rigorous validation.