Exploring the Potential of Optical Polarization Remote Sensing for Oil Spill Detection: A Case Study of Deepwater Horizon

Author:

Zhang ZihanORCID,Yan Lei,Jiang Xingwei,Ding Jing,Zhang Feizhou,Jiang Kaiwen,Shang Ke

Abstract

Oil spills lead to catastrophic problems. In most oil spill cases, the spatial and temporal intractability of the detriment cannot be neglected, and problems related to economic, social and environmental factors constantly appear for a long time. Remote sensing has been widely used as a powerful means to conduct oil spill detection. Optical polarization remote sensing, thriving in recent years, shows a novel potential for oil spill detection. This paper provides a demonstration of the use of open-source POLDER/PARASOL polarization time-series data to detect oil spill. The Deepwater Horizon oil spill, one of the largest oil spill disasters, is utilized to explore the potential of optical polarization remote sensing for oil spill detection. A total of 24 feature combinations are organized to quantitatively study the positive effect of adding polarization information and the appropriate way to describe polarization characteristics. Random forest classifier models are trained with different combinations, and the results are assessed by 10-fold cross-validation. The improvement from adding polarization characteristics is remarkable ((average) accuracy: +0.51%; recall: +2.83%; precision: +3.49%; F1 score: +3.01%, (maximum) accuracy: +0.80%; recall: +5.09%; precision: +6.92%; F1 score: +4.72%), and coupling between the degree of polarization and the phase angle of polarization provides the best description of polarization information. This study confirms the potential of optical polarization remote sensing for oil spill detection, and some detailed problems related to model establishment and polarization feature characterization are discussed for the further application of polarization information.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3