Polarized radiative transfer in seawater-in-oil emulsions floated on seawater considering the impact of oil absorption on seawater droplet scattering

Author:

Jia Chengwei,Wang Chengchao,Ma Lanxin,Wang Cunhai1ORCID,Liu LinhuaORCID

Affiliation:

1. University of Science and Technology Beijing

Abstract

Among various remote sensing approaches, optical polarization remote sensing shows great advantages in identifying oil–water emulsions in seawater and has become one of the most promising detection technologies. Herein, we focus on exploring the sensitivity of polarized radiative transfer properties for oil emulsion polarization detection to the influence factors of viewing angle, droplet volume fraction and radius, incident wavelength, and emulsion thickness. The radiative properties of seawater droplets dispersed in crude oil are calculated using the improved Lorenz–Mie theory considering the absorption of crude oil as the host medium, after which the reflected Stokes vector and the degree of linear polarization (DOLP) of seawater-in-oil emulsions floating on seawater are obtained using the spectral element method. By analyzing the calculation results of a 0° viewing azimuth angle, the detection wavelength and viewing zenith angles corresponding to the highest sensitivity of the DOLP to the above factors are significantly different; thus, quantitative remote sensing detection of the droplet volume fraction, droplet diameter, and emulsion thickness is possible. Exploring the sensitivity of polarized remote sensing signals for oil emulsion polarization detection to the above factors is a prerequisite for quantitative polarization detection of oil emulsions.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Young Scholars Program of Shandong University

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3