Abstract
The study of cloud types is critical for understanding atmospheric motions and climate predictions; for example, accurately classified cloud products help improve meteorological predicting accuracies. However, the current satellite cloud classification methods generally analyze the threshold change in a single pixel and do not consider the relationship between the surrounding pixels. The classification development relies heavily on human recourses and does not fully utilize the data-driven advantages of computer models. Here, a new intelligent cloud classification method based on the U-Net network (CLP-CNN) is developed to obtain more accurate, higher frequency, and larger coverage cloud classification products. The experimental results show that the CLP-CNN network can complete a cloud classification task of 800 × 800 pixels in 0.9 s. The classification area covers most of China, and the classification task only needs to use the original L1-level data, which can meet the requirements of a real-time operation. With the Himawari-8 CLTYPE product and the CloudSat 2B-CLDCLASS product as the test comparison target, the CLP-CNN network results match the Himawari-8 product highly, by 84.4%. The probability of detection (POD) is greater than 0.83 for clear skies, deep-convection, and Cirrus–Stratus type clouds. The probability of detection (POD) and accuracy are improved compared with other deep learning methods.
Subject
General Earth and Planetary Sciences
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献