Integration of VIIRS Observations with GEDI-Lidar Measurements to Monitor Forest Structure Dynamics from 2013 to 2020 across the Conterminous United States

Author:

Rishmawi KhaldounORCID,Huang Chengquan,Schleeweis Karen,Zhan XiwuORCID

Abstract

Consistent and spatially explicit periodic monitoring of forest structure is essential for estimating forest-related carbon emissions, analyzing forest degradation, and supporting sustainable forest management policies. To date, few products are available that allow for continental to global operational monitoring of changes in canopy structure. In this study, we explored the synergy between the NASA’s spaceborne Global Ecosystem Dynamics Investigation (GEDI) waveform LiDAR and the Visible Infrared Imaging Radiometer Suite (VIIRS) data to produce spatially explicit and consistent annual maps of canopy height (CH), percent canopy cover (PCC), plant area index (PAI), and foliage height diversity (FHD) across the conterminous United States (CONUS) at a 1-km resolution for 2013–2020. The accuracies of the annual maps were assessed using forest structure attribute derived from airborne laser scanning (ALS) data acquired between 2013 and 2020 for the 48 National Ecological Observatory Network (NEON) field sites distributed across the CONUS. The root mean square error (RMSE) values of the annual canopy height maps as compared with the ALS reference data varied from a minimum of 3.31-m for 2020 to a maximum of 4.19-m for 2017. Similarly, the RMSE values for PCC ranged between 8% (2020) and 11% (all other years). Qualitative evaluations of the annual maps using time series of very high-resolution images further suggested that the VIIRS-derived products could capture both large and “more” subtle changes in forest structure associated with partial harvesting, wind damage, wildfires, and other environmental stresses. The methods developed in this study are expected to enable multi-decadal analysis of forest structure and its dynamics using consistent satellite observations from moderate resolution sensors such as VIIRS onboard JPSS satellites.

Funder

National Oceanic and Atmospheric Administration

National Aeronautics and Space Administration

US Forest Service

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3