Multi-Level Alignment Network for Cross-Domain Ship Detection

Author:

Xu Chujie,Zheng Xiangtao,Lu Xiaoqiang

Abstract

Ship detection is an important research topic in the field of remote sensing. Compared with optical detection methods, Synthetic Aperture Radar (SAR) ship detection can penetrate clouds to detect hidden ships in all-day and all-weather. Currently, the state-of-the-art methods exploit convolutional neural networks to train ship detectors, which require a considerable labeled dataset. However, it is difficult to label the SAR images because of expensive labor and well-trained experts. To address the above limitations, this paper explores a cross-domain ship detection task, which adapts the detector from labeled optical images to unlabeled SAR images. There is a significant visual difference between SAR images and optical images. To achieve cross-domain detection, the multi-level alignment network, which includes image-level, convolution-level, and instance-level, is proposed to reduce the large domain shift. First, image-level alignment exploits generative adversarial networks to generate SAR images from the optical images. Then, the generated SAR images and the real SAR images are used to train the detector. To further minimize domain distribution shift, the detector integrates convolution-level alignment and instance-level alignment. Convolution-level alignment trains the domain classifier on each activation of the convolutional features, which minimizes the domain distance to learn domain-invariant features. Instance-level alignment reduces domain distribution shift on the features extracted from the region proposals. The entire multi-level alignment network is trained end-to-end and its effectiveness is proved on multiple cross-domain ship detection datasets.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Remote Sensing Image Dehazing via a Local Context-Enriched Transformer;Remote Sensing;2024-04-17

2. SAR-CDSS: A Semi-Supervised Cross-Domain Object Detection from Optical to SAR Domain;Remote Sensing;2024-03-07

3. Ship Detection With SAR C-Band Satellite Images: A Systematic Review;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

4. CroMoDa: Unsupervised Oriented SAR Ship Detection via Cross-Modality Distribution Alignment;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

5. Source-Assisted Hierarchical Semantic Calibration Method for Ship Detection Across Different Satellite SAR Images;IEEE Transactions on Geoscience and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3