Remote Sensing Image Dehazing via a Local Context-Enriched Transformer

Author:

Nie Jing1ORCID,Xie Jin23,Sun Hanqing4ORCID

Affiliation:

1. School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China

2. School of Big Data and Software Engineering, Chongqing University, Chongqing 400044, China

3. Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China

4. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

Abstract

Remote sensing image dehazing is a well-known remote sensing image processing task focused on restoring clean images from hazy images. The Transformer network, based on the self-attention mechanism, has demonstrated remarkable advantages in various image restoration tasks, due to its capacity to capture long-range dependencies within images. However, it is weak at modeling local context. Conversely, convolutional neural networks (CNNs) are adept at capturing local contextual information. Local contextual information could provide more details, while long-range dependencies capture global structure information. The combination of long-range dependencies and local context modeling is beneficial for remote sensing image dehazing. Therefore, in this paper, we propose a CNN-based adaptive local context enrichment module (ALCEM) to extract contextual information within local regions. Subsequently, we integrate our proposed ALCEM into the multi-head self-attention and feed-forward network of the Transformer, constructing a novel locally enhanced attention (LEA) and a local continuous-enhancement feed-forward network (LCFN). The LEA utilizes the ALCEM to inject local context information that is complementary to the long-range relationship modeled by multi-head self-attention, which is beneficial to removing haze and restoring details. The LCFN extracts multi-scale spatial information and selectively fuses them by the the ALCEM, which supplements more informative information compared with existing regular feed-forward networks with only position-specific information flow. Powered by the LEA and LCFN, a novel Transformer-based dehazing network termed LCEFormer is proposed to restore clear images from hazy remote sensing images, which combines the advantages of CNN and Transformer. Experiments conducted on three distinct datasets, namely DHID, ERICE, and RSID, demonstrate that our proposed LCEFormer achieves the state-of-the-art performance in hazy scenes. Specifically, our LCEFormer outperforms DCIL by 0.78 dB and 0.018 for PSNR and SSIM on the DHID dataset.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3