Author:
Sangjan Worasit,McGee Rebecca J.,Sankaran Sindhuja
Abstract
Forage and field peas provide essential nutrients for livestock diets, and high-quality field peas can influence livestock health and reduce greenhouse gas emissions. Above-ground biomass (AGBM) is one of the vital traits and the primary component of yield in forage pea breeding programs. However, a standard method of AGBM measurement is a destructive and labor-intensive process. This study utilized an unmanned aerial vehicle (UAV) equipped with a true-color RGB and a five-band multispectral camera to estimate the AGBM of winter pea in three breeding trials (two seed yields and one cover crop). Three processing techniques—vegetation index (VI), digital surface model (DSM), and 3D reconstruction model from point clouds—were used to extract the digital traits (height and volume) associated with AGBM. The digital traits were compared with the ground reference data (measured plant height and harvested AGBM). The results showed that the canopy volume estimated from the 3D model (alpha shape, α = 1.5) developed from UAV-based RGB imagery’s point clouds provided consistent and high correlation with fresh AGBM (r = 0.78–0.81, p < 0.001) and dry AGBM (r = 0.70–0.81, p < 0.001), compared with other techniques across the three trials. The DSM-based approach (height at 95th percentile) had consistent and high correlation (r = 0.71–0.95, p < 0.001) with canopy height estimation. Using the UAV imagery, the proposed approaches demonstrated the potential for estimating the crop AGBM across winter pea breeding trials.
Funder
Washington State University
National Institute of Food and Agriculture
Subject
General Earth and Planetary Sciences
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献