Abstract
Accurate extraction of crop cultivated area and spatial distribution is essential for food security. Crop classification methods based on machine learning and deep learning and remotely sensed time-series data are widely utilized to detect crop planting area. However, few studies assess the effectiveness of machine learning and deep learning algorithm integrated time-series satellite data for identifying multiple crop type classification over a large-scale region. Hence, this study aims to evaluate the effectiveness of machine learning and deep learning models in crop classification and provide a framework for large-scale multiple crop type classification based on time-series of satellite data. The time-series of the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and NaE (combined NDVI and EVI) were adopted as input features, and four widely used machine learning models, including Support Vector Machine (SVM), Random Forest (RF), K-Nearest Neighbor (KNN), and their integration (Stacking) were compared to examine the performance of multiple crop types (i.e., wheat, corn, wheat-corn, early rice, and early rice-late rice) classification in the North China Plain. The performance of two types of deep learning classifiers: the One-dimensional Convolutional Neural Network (Conv1D) and Long Short-Term Memory Networks (LSTM), were also tested. The results showed that the NaE feature performed best among three input features, and the Stacking model produced the highest accuracy (77.12%) compared to other algorithms.
Funder
National Natural Science Foundation of China
Chinese Academy of Sciences
Subject
General Earth and Planetary Sciences
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献