Innovative Decision Fusion for Accurate Crop/Vegetation Classification with Multiple Classifiers and Multisource Remote Sensing Data

Author:

Shuai Shuang1ORCID,Zhang Zhi2,Zhang Tian3,Luo Wei4,Tan Li4,Duan Xiang1,Wu Jie1ORCID

Affiliation:

1. School of Civil Engineering and Architecture, Wuhan Polytechnic University, Wuhan 430023, China

2. School of Geophysics and Geomatics, China University of Geoscience (Wuhan), Wuhan 430074, China

3. China Communications Construction Company Second Highway Consultants Limited Company, Wuhan 430056, China

4. School of Management, Wuhan Polytechnic University, Wuhan 430023, China

Abstract

Obtaining accurate and real-time spatial distribution information regarding crops is critical for enabling effective smart agricultural management. In this study, innovative decision fusion strategies, including Enhanced Overall Accuracy Index (E-OAI) voting and the Overall Accuracy Index-based Majority Voting (OAI-MV), were introduced to optimize the use of diverse remote sensing data and various classifiers, thereby improving the accuracy of crop/vegetation identification. These strategies were utilized to integrate crop/vegetation classification outcomes from distinct feature sets (including Gaofen-6 reflectance, Sentinel-2 time series of vegetation indices, Sentinel-2 time series of biophysical variables, Sentinel-1 time series of backscatter coefficients, and their combinations) using distinct classifiers (Random Forests (RFs), Support Vector Machines (SVMs), Maximum Likelihood (ML), and U-Net), taking two grain-producing areas (Site #1 and Site #2) in Haixi Prefecture, Qinghai Province, China, as the research area. The results indicate that employing U-Net on feature-combined sets yielded the highest overall accuracy (OA) of 81.23% and 91.49% for Site #1 and Site #2, respectively, in the single classifier experiments. The E-OAI strategy, compared to the original OAI strategy, boosted the OA by 0.17% to 6.28%. Furthermore, the OAI-MV strategy achieved the highest OA of 86.02% and 95.67% for the respective study sites. This study highlights the distinct strengths of various remote sensing features and classifiers in discerning different crop and vegetation types. Additionally, the proposed OAI-MV and E-OAI strategies effectively harness the benefits of diverse classifiers and multisource remote sensing features, significantly enhancing the accuracy of crop/vegetation classification.

Funder

Scientific research project of Wuhan Polytechnic University

Key Laboratory of the Northern Qinghai–Tibet Plateau Geological Processes and Mineral Resources

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3