Abstract
The results on the effectiveness of five 2D electrical resistivity tomography (ERT) survey profiles for Ag-Pb-Zn, fluorite, and barite exploration Mississippi Valley Type (MVT) and on the magmatic deposits of northeast Mexico, are presented. The profiles were made in areas with mining activities or mineralization outcrops. Schlumberger, dipole-dipole, and Wenner array configurations were used on the measurements. The results showed that electric resistivity can be used to distinguish between mineralized zones. In magmatic-type Pb-Zn and MVT Pb-Zn deposits, resistivity values are shown as low. In magmatic-type fluorite and MVT fluorite deposits, as well as the MVT barite deposit, low-resistivity values are related to Fe sulfides and clays. With these results it is possible to connect observed surface mineralization with underground mineralization. New mineralized zones are also found and their geometries, extensions, and dipping are reported. Therefore, lower resistivity values can be linked to mineral bodies with higher Ag-Pb-Zn contents, as well as bodies enriched in Fe sulfides, Fe oxides, and clays in the fluorite and barite mineralizations. In most ERT models, fractures and faults are identified, indicating a structural control on mineralization. From the geoelectric patterns we can infer the magmatic and MVT origin of these mineral deposits.
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献