Affiliation:
1. School of Aeronautics, Harbin Institute of Technology, Harbin 150001, China
Abstract
This paper presents a compact RF energy harvesting wireless sensor node with the antenna, rectifier, energy management circuits, and load integrated on a single printed circuit board and a total size of 53 mm × 59.77 mm × 4.5 mm. By etching rectangular slots in the radiation patch, the antenna area is reduced by 13.9%. The antenna is tested to have an S11 of −24.9 dB at 2.437 GHz and a maximum gain of 4.8 dBi. The rectifier has a maximum RF-to-DC conversion efficiency of 52.53% at 7 dBm input energy. The proposed WSN can achieve self-powered operation at a distance of 13.4 m from the transmitter source. To enhance the conversion efficiency under different input energy densities, this paper establishes an energy model for two operating modes and proposes an energy-intensity adaptive management algorithm. The experiments demonstrated that the proposed WSN can effectively distinguish between the two operating modes based on input energy intensity and realize efficient energy management.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献