Imputation of Ammonium Nitrogen Concentration in Groundwater Based on a Machine Learning Method

Author:

Li Wanlu,Ye XueyanORCID,Du XinqiangORCID

Abstract

Ammonium is one of the main inorganic pollutants in groundwater, mainly due to agricultural, industrial and domestic pollution. Excessive ammonium can cause human health risks and environmental consequences. Its temporal and spatial distribution is affected by factors such as meteorology, hydrology, hydrogeology and land use type. Thus, a groundwater ammonium analysis based on limited sampling points produces large uncertainties. In this study, organic matter content, groundwater depth, clay thickness, total nitrogen content (TN), cation exchange capacity (CEC), pH and land-use type were selected as potential contributing factors to establish a machine learning model for fitting the ammonium concentration. The Shapley Additive exPlanations (SHAP) method, which explains the machine learning model, was applied to identify the more significant influencing factors. Finally, the machine learning model established according to the more significant influencing factors was used to impute point data in the study area. From the results, the soil organic matter feature was found to have a substantial impact on the concentration of ammonium in the model, followed by soil pH, clay thickness and groundwater depth. The ammonium concentration generally decreased from northwest to southeast. The highest values were concentrated in the northwest and northeast. The lowest values were concentrated in the southeast, southwest and parts of the east and north. The spatial interpolation based on the machine learning imputation model established according to the influencing factors provides a reliable groundwater quality assessment and was not limited by the number and the geographical location of samplings.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3