An Imputation Method for Simulating 3D Well Screen Locations from Limited Regional Well Log Data

Author:

Kourakos GeorgiosORCID,Pauloo Rich1,Harter Thomas1

Affiliation:

1. Department of Land, Air, and Water Resources One Shields Avenue University of California Davis CA 95616‐8628 USA

Abstract

AbstractIn groundwater modeling studies, accurate spatial and intensity identification of water sources and sinks is of critical importance. Precise construction data about wells (water sinks) are particularly difficult to obtain. The collection of well log data is expensive and laborious, and government records of historic well log data are often imprecise and incomplete with respect to the precise location or pumping rate. In many groundwater modeling studies, such as groundwater quality assessments, a precise representation of the horizontal and vertical distribution of well screens is required to accurately estimate contaminant breakthrough curves. The number of wells under consideration may be very large, for example, in the assessment of nonpoint source pollution. In this paper, we propose an imputation framework that allows for proper reconstruction of missing well data. Our approach exploits available information and tolerates data gaps and imprecisions. We demonstrate the value of this method for a subregion of the Central Valley aquifer (California, USA). We show that our framework imputes missing values that preserve statistical properties of available data and that remain consistent with the known spatial distribution of well screens and pumping rates in the three‐dimensional aquifer system.

Funder

Natural Resources Conservation Service

California State Water Resources Control Board

Publisher

Wiley

Reference74 articles.

1. Robust data imputation

2. Imputation of missing values in environmental time series by D-vine copulas

3. Estimation of replenishable groundwater resources of India and their status of utilization;Chatterjee R.;Current Science,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3