Abstract
In the science and engineering fields of study, a hands-on learning experience is as crucial a part of the learning process for the student as the theoretical aspect of a given subject. With the COVID-19 pandemic in 2020, educational institutions were forced to migrate to digital platforms to ensure the continuity of the imparted lectures. The online approach can be challenging for engineering programs, especially in courses that employ practical laboratory methods as the primary teaching strategies. Laboratory courses that include specialized hardware and software cannot migrate to a virtual environment without compromising the advantages that a hands-on method provides to the engineering student. This work assesses different approaches in the virtualization process of a laboratory facility, diving these into key factors such as required communication infrastructure and available technologies; it opens a discussion on the trends and possible obstacles in the virtualization of a Real-Time (RT) laboratory intended for Microgrid education in a power electronics laboratory course, exposing the main simulation strategies that can be used in an RT environment and how these have different effects on the learning process of student, as well as addressing the main competencies an engineering student can strengthen through interaction with RT simulation technologies.
Subject
Computer Networks and Communications
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献