Evaluating Model Predictions of Fire Induced Tree Mortality Using Wildfire-Affected Forest Inventory Measurements

Author:

Barker Jason S.,Fried Jeremy S.ORCID,Gray Andrew N.

Abstract

Forest land managers rely on predictions of tree mortality generated from fire behavior models to identify stands for post-fire salvage and to design fuel reduction treatments that reduce mortality. A key challenge in improving the accuracy of these predictions is selecting appropriate wind and fuel moisture inputs. Our objective was to evaluate postfire mortality predictions using the Forest Vegetation Simulator Fire and Fuels Extension (FVS-FFE) to determine if using representative fire-weather data would improve prediction accuracy over two default weather scenarios. We used pre- and post-fire measurements from 342 stands on forest inventory plots, representing a wide range of vegetation types affected by wildfire in California, Oregon, and Washington. Our representative weather scenarios were created by using data from local weather stations for the time each stand was believed to have burned. The accuracy of predicted mortality (percent basal area) with different weather scenarios was evaluated for all stands, by forest type group, and by major tree species using mean error, mean absolute error (MAE), and root mean square error (RMSE). One of the representative weather scenarios, Mean Wind, had the lowest mean error (4%) in predicted mortality, but performed poorly in some forest types, which contributed to a relatively high RMSE of 48% across all stands. Driven in large part by over-prediction of modelled flame length on steeper slopes, the greatest over-prediction mortality errors arose in the scenarios with higher winds and lower fuel moisture. Our results also indicated that fuel moisture was a stronger influence on post-fire mortality than wind speed. Our results suggest that using representative weather can improve accuracy of mortality predictions when attempting to model over a wide range of forest types. Focusing simulations exclusively on extreme conditions, especially with regard to wind speed, may lead to over-prediction of tree mortality from fire.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3