Author:
Zhang Xinman,Zhang Jiayu,Ma Mei,Chen Zhiqi,Yue Shuangling,He Tingting,Xu Xuebin
Abstract
Steel bars play an important role in modern construction projects and their quality enormously affects the safety of buildings. It is urgent to detect whether steel bars meet the specifications or not. However, the existing manual detection methods are costly, slow and offer poor precision. In order to solve these problems, a high precision quality inspection system for steel bars based on machine vision is developed. We propose two algorithms: the sub-pixel boundary location method (SPBLM) and fast stitch method (FSM). A total of five sensors, including a CMOS, a level sensor, a proximity switch, a voltage sensor, and a current sensor have been used to detect the device conditions and capture image or video. The device could capture abundant and high-definition images and video taken by a uniform and stable smartphone at the construction site. Then data could be processed in real-time on a smartphone. Furthermore, the detection results, including steel bar diameter, spacing, and quantity would be given by a practical APP. The system has a rather high accuracy (as low as 0.04 mm (absolute error) and 0.002% (relative error) of calculating diameter and spacing; zero error in counting numbers of steel bars) when doing inspection tasks, and three parameters can be detected at the same time. None of these features are available in existing systems and the device and method can be widely used to steel bar quality inspection at the construction site.
Funder
National Natural Science Foundation
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献