Role of Maximum Entropy and Citizen Science to Study Habitat Suitability of Jacobin Cuckoo in Different Climate Change Scenarios

Author:

Singh Priyanka,Saran Sameer,Kocaman SultanORCID

Abstract

Recent advancements in spatial modelling and mapping methods have opened up new horizons for monitoring the migration of bird species, which have been altered due to the climate change. The rise of citizen science has also aided the spatiotemporal data collection with associated attributes. The biodiversity data from citizen observatories can be employed in machine learning algorithms for predicting suitable environmental conditions for species’ survival and their future migration behaviours. In this study, different environmental variables effective in birds’ migrations were analysed, and their habitat suitability was assessed for future understanding of their responses in different climate change scenarios. The Jacobin cuckoo (Clamator jacobinus) was selected as the subject species, since their arrival to India has been traditionally considered as a sign for the start of the Indian monsoon season. For suitability predictions in current and future scenarios, maximum entropy (Maxent) modelling was carried out with environmental variables and species occurrences observed in India and Africa. For modelling, the correlation test was performed on the environmental variables (bioclimatic, precipitation, minimum temperature, maximum temperature, precipitation, wind and elevation). The results showed that precipitation-related variables played a significant role in suitability, and through reclassified habitat suitability maps, it was observed that the suitable areas of India and Africa might decrease in future climatic scenarios (SSPs 2.6, 4.5, 7.0 and 8.5) of 2030 and 2050. In addition, the suitability and unsuitability areas were calculated (in km2) to observe the subtle changes in the ecosystem. Such climate change studies can support biodiversity research and improve the agricultural economy.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3