Abstract
The rapid development of renewable energy, represented by wind and photovoltaic, provides a new solution for island power supplies. However, due to the intermittent and random nature of renewable energy, a microgrid needs energy-storage components to stabilize its power supply when coupled with them. The emergence of seawater-pumped storage stations provides a new method to offset the shortage of island power supply. In this study, an optimal scheduling of island microgrid is proposed, which uses seawater-pumped storage station as the energy storage equipment to cooperate with wind, photovoltaic and diesel generator. First, a mathematic formulation of seawater-pumped storage station with renewable energy is presented. Then, to reach the goal of economic dispatch, an optimal scheduling model of island microgrid is established with the consideration of both respective operation constraints and island load requirements. Finally, the effectiveness of the proposed model is verified by an island microgrid over two typical seasons. The simulation results show that the proposed framework not only increases the usage of renewable energy, but also improves the operational reliability and economy of island microgrids.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献