Study on Grid-Connected Strategy of Distribution Network with High Hydropower Penetration Rate in Isolated Operation

Author:

Zhang Zifan,Wang Zhidong,Chen Zhifeng,Wang Gan,Shen Na,Guo Changxing

Abstract

As the largest global renewable source, hydropower is a useful supplement to mountainous distribution networks with abundant water resources, and shoulders a large portion of the regulation duty in many power systems. In particular, in the form of decentralized energy sources located to their customers, small hydropower (SHP) improve grid stability by diversifying the electricity system and reducing power loss. The mountainous distribution networks supplied by small hydropower are closed-loop design but open-loop operation, which easily causes the tripping of tie line even further the off-grid operation of small hydropower system. Once the tie line trips, the current countermeasures—such as hydropower shutdown and load shedding—do not fully guarantee the reliability of power supply and the utilization efficiency of hydropower. This paper studies the amplitude-frequency characteristics of SHP off-grid, according to the typical integration of hydropower in South China, a SHP on-grid/off-grid model is established based on the Power Systems Computer Aided Design (PSCAD) platform. It is found that due to the inertia of SHP, the amplitude-frequency characteristics of SHP island system are relatively slow, and the process of non-synchronization with the main grid is gradually expanded. The characteristic of SHP has a certain degree of synchronization with the main grid in the initial island operates stage, which helps to find a novel grid connection method. This paper further proposes the strategy of using fast busbar automatic transfer switch (BATS), which quickly connect the trip-off SHP to the distribution network under the condition of permitting distributed energy grid-connected. The PSCAD simulation results show that proposed strategy has a limited impact on the power grid and prove the effectiveness of the method.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3