Application of Combined Developments in Processes and Models to the Determination of Hot Metal Temperature in BOF Steelmaking

Author:

Díaz JoséORCID,Fernández Francisco Javier

Abstract

Nowadays, the steel industry is seeking to reduce its carbon footprint without affecting productivity or profitability. This challenge needs to be supported by continuous improvements in equipment, methods, sensors and models. The present work exposes how the combined development of processes and models (CDPM) has been applied to the improvement of hot metal temperature determination. The synergies that arise when both sides of this research are simultaneously approached are evidenced. A workflow that takes into account the CDPM approach is proposed. First, a thermal model of the process is developed, making it possible to identify that hot metal temperature is a key lever for carbon footprint reduction. Then, three main alternatives for hot metal temperature determination are compared: infrared thermometry, time-series forecasting and machine learning prediction. Despite considering only few process variables, machine learning techniques succeed in extracting relevant information from process databases. An accuracy close to infrared thermometry is obtained, with a much higher applicability. This research shows that process-model alternatives are complementary when judiciously nested in the process computer routines. Combining measurement and modelling techniques, 100% applicability is achieved with an error reduction of 7 °C.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference48 articles.

1. Worldsteel Steel Statistical Yearbook 2019http://www.worldsteel.org/steel-by-topic/statistics/steel-statistical-yearbook.html

2. ArcelorMittal Climate Action Reporthttps://annualreview2018.arcelormittal.com/~/ media/Files/A/Arcelormittal-AR-2018/AM_ClimateActionReport_2018.pdf

3. The science and technology of steelmaking—Measurements, models, and manufacturing

4. Elements of mathematical modeling;Mazumdar,2009

5. Neural predictor of the end point in a converter

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3