Differential Impacts of Acacia Invasion on Nutrient Fluxes in Two Distinct Bornean Lowland Tropical Rain Forests

Author:

Jaafar Salwana Md.,Metali FaizahORCID,Nafiah Siti Nisa Syahzanani,Supri Nur E’zzati,Ahmad Nurhazimah,Burslem David F. R. P.ORCID,Sukri Rahayu SukmariaORCID

Abstract

Invasive Acacia species can alter nutrient cycling processes in forest ecosystems, particularly affecting total litterfall production and litter decomposition patterns. This study examined the effects of exotic Acacia mangium Willd. on total litterfall production, nutrient concentrations in leaf litterfall fractions, leaf litter decomposition, and nutrient release in lowland heath (HF) and mixed dipterocarp forests (MDF) in Brunei Darussalam, Borneo. Above-ground litterfall traps were installed in HF and MDF with and without invasive Acacia present, representing four habitat types in total, and monthly collections were conducted for 12 months. Litter decomposition bags were deployed to determine the rates of decomposition and nutrient release. Habitats invaded by Acacia exhibited higher total litterfall production, increased leaf litter concentrations of nitrogen, potassium, and calcium, and increased addition of all nutrients measured in litter (nitrogen, phosphorus, potassium, calcium, and magnesium, especially in the Acacia-invaded mixed dipterocarp forest (AMDF) and nitrogen and potassium in Acacia-invaded heath forest (AHF)), reduced nitrogen and potassium use efficiencies in AHF, and reduced stand-level nitrogen and calcium use efficiencies in AMDF. Litter decomposition rates and nutrient release were lower in AMDF than in the three other habitats. The significantly higher total litterfall production coupled with higher nutrient addition in the two Acacia-invaded habitats is expected to progressively increase the abilities of these habitats to produce large quantities of nutrient-rich litter and will likely eventually lead to an enrichment of nutrients in the soil, thus facilitating further invasion by Acacia, particularly in the MDF.

Funder

Brunei Research Council

Universiti Brunei Darussalam

University Graduate Scholarship (UGS) from Universiti Brunei Darussalam

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3