Abstract
Plasma-enhanced chemical vapor deposition (PECVD) was used to produce new Ru-based thin catalytic films. The surface molecular structure of the films was examined by X-ray photoelectron spectroscopy (XPS). To determine the electro- and photoelectrochemical properties, the oxygen evolution reaction (OER) process was investigated by linear sweep voltammetry (LSV) at pH = 13.6. It was found that Ru atoms were mainly in the metallic state (Ru0) in the as-deposited films, whereas after the electrochemical stabilization, higher oxidation states, mainly Ru+4 (RuO2), were formed. The stabilized films exhibited high catalytic activity in OER—for the electrochemical process, the onset and η10 overpotentials were approx. 220 and 350 mV, respectively, while for the photoelectrochemical process, the pure photocurrent density of about 160 mA/cm2 mg was achieved at 1.6 V (vs. reversible hydrogen electrode (RHE)). The plasma-deposited RuOX catalyst appears to be an interesting candidate for photoanode material for photoelectrochemical (PEC) water splitting.
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献