Enhanced Supercapacitive Performance in Catalyst‐Free Binary Composite SnO2–RuO2 Nanostructured Thin Films for Symmetric Supercapacitor Device

Author:

Rani Reenu12,Sharma Meenakshi23,Mohan Brij1,Kumar Ashwani4,Chandra Ramesh2,Malik Vivek Kumar12ORCID

Affiliation:

1. Department of Physics Indian Institute of Technology Roorkee Roorkee Uttrakhand 247667 India

2. Thin Film Laboratory Institute Instrumentation Centre Indian Institute of Technology Roorkee Roorkee Uttrakhand 247667 India

3. Centre for Nanotechnology Indian Institute of Technology Roorkee Roorkee Uttrakhand 247667 India

4. Department of Physics Regional Institute of Education (NCERT) Bhubaneswar Odisha 751022 India

Abstract

In the present work, thin film electrodes of ruthenium oxide (RuO2), tin oxide (SnO2), and their composite SnO2–RuO2 are deposited on 304 stainless steel substrates using pulsed laser deposition (PLD). These nanostructured electrodes are then evaluated for their suitability in electrochemical energy storage applications. A symmetric supercapacitor device (SSD) is constructed using the SnO2–RuO2 composite electrodes. Compared to individual SnO2 and RuO2 electrodes, the composite electrodes exhibit enhanced specific capacitance and cycle life. This improvement is attributed to modifications in surface morphology and electronic properties. This modified surface morphology of the composite electrode, creates favourable conditions for electrolyte interaction and ion transport, ultimately contributing to the observed increase in specific capacitance. Specifically, the composite electrode demonstrates a specific capacitance of 170.2 Fg−1 at a current density of 0.1 mA cm−2, outperforming SnO2 (37.4 Fg−1). The SnO2–RuO2//SnO2–RuO2 SSD exhibites a specific capacitance of 70.0 Fg−1 at a current density of 0.1 mA cm−2, coupled with energy density and power density values of 19.05 Wh kg−1 and 645 W kg−1, respectively, within a voltage window of 1.4 V. The SSD displays an impressive capacitive retention of 81.27% over 10 000 cycles, indicating its potential for practical energy storage applications.

Funder

UGC-DAE Consortium for Scientific Research, University Grants Commission

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3