Synthesis and Characterization of N-Doped SiC Powder with Enhanced Photocatalytic and Photoelectrochemical Performance

Author:

Liu Wanli,Li Qi,Yang Xianglong,Chen Xiufang,Xu Xiangang

Abstract

Solar-light-driven N-doped 3C–SiC powder was synthesized via a simple one-step combustion route. SiC–N2 photocatalysts exhibited 205.3 μL/(g·h) hydrogen evolution rate, nearly 2 times that of SiC–Ar(120.1 μL/(g·h)), and was much higher than that of SiC nanowires (83.9 μL/(g·h)), SiC nanoparticles (82.8 μL/(g·h)) as well as the B-doped SiC photocatalysts(166 μL/(g·h)). In cyclic tests, N-doped SiC also performed excellent photocatalytic durability and good structural stability. It can be concluded that the influence of N-doping introduced defects into the SiC photocatalyst by occupation and mixed phase structure, transformed the band structure into the direct band gap, and formed a shallow donor level for trapping holes. Consequently, higher photocatalytic activities and lower recombination was achieved. Furthermore, the carbon on the photocatalyst which was yielded from the substitution of N or which remained after combustion would build constructed efficient interfacial contact with SiC for the quickening of light-driven electron transfer to the surface, and simultaneously strengthen the adsorption capacity and light-harvesting potential.

Funder

Key Technology Research and Development Program of Shandong

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3