Efficient Sorbitol Producing Process through Glucose Hydrogenation Catalyzed by Ru Supported Amino Poly (Styrene-co-Maleic) Polymer (ASMA) Encapsulated on γ-Al2O3

Author:

Zhao Jing,Yang Xiaorui,Wang WeiORCID,Liang Jinhua,Orooji YasinORCID,Dai Chaowen,Fu Xiaomin,Yang Yunsong,Xu Wenlong,Zhu Jianliang

Abstract

In this work, a core-shell-like sphere ruthenium catalyst, named as 5%Ru/γ-Al2O3@ASMA, has been successfully synthesized through impregnating the ruthenium nanoparticles (NPs) on the surface of the amino poly (styrene-co-maleic) polymer (ASMA) encapsulating γ-Al2O3 pellet support. The interaction between the Ru cations and the electro-donating polymer shell rich in hydroxyl and amino groups through the coordination bond would guarantee that the Ru NPs can be highly dispersed and firmly embedded on the surface of the support. In addition, the solid sphere γ-Al2O3 pellet could serve as the core to support the resulted catalysts applied in the flow process in a trickle bed reactor to promote the productivity. The resulted catalyst 5%Ru/γ-Al2O3@ASMA can be applied efficiently in the glucose hydrogenation and presents a steadfast sorbitol yield of almost 90% both in batch reactor and the trickle bed reactor, indicating the potential feasibility of the core-shell-like catalyst in the efficient production of sorbitol.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3