Production of Sorbitol via Hydrogenation of Glucose over Ruthenium Coordinated with Amino Styrene-co-maleic Anhydride Polymer Encapsulated on Activated Carbon (Ru/ASMA@AC) Catalyst

Author:

Yang Xiaorui1,Li Xiaotong1,Zhao Jing1,Liang Jinhua1,Zhu Jianliang1

Affiliation:

1. College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China

Abstract

Sorbitol, a product primarily derived from glucose hydrogenation, has extensive applications in the pharmaceutical, chemical and other industries. Amino styrene-co-maleic anhydride polymer encapsulated on activated carbon (Ru/ASMA@AC) catalysts were developed for efficient glucose hydrogenation and were prepared and confined Ru by coordination with styrene-co-maleic anhydride polymer (ASMA). Through single-factor experiments, optimal conditions were determined to be 2.5 wt.% ruthenium loading and a catalyst usage of 1.5 g, 20% glucose solution at 130 °C, reaction pressure of 4.0 MPa, and a stirring speed of 600 rpm for 3 h. These conditions achieved a high glucose conversion rate of 99.68% and a sorbitol selectivity of 93.04%. Reaction kinetics testing proved that the hydrogenation of glucose catalyzed by Ru/ASMA@AC was a first-order reaction, with a reaction activation energy of 73.04 kJ/mol. Furthermore, the catalytic performance of the Ru/ASMA@AC and Ru/AC catalysts for glucose hydrogenation were compared and characterized by various detection methods. The Ru/ASMA@AC catalyst exhibited excellent stability after five cycles, whereas the traditional Ru/AC catalyst suffered from a 10% decrease in sorbitol yield after three cycles. These results suggest that the Ru/ASMA@AC catalyst is a more promising candidate for high-concentration glucose hydrogenation due to its high catalytic performance and superior stability.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3