New Phosphorous-Based [FeFe]-Hydrogenase Models

Author:

Wittkamp Florian,Boydas Esma Birsen,Roemelt MichaelORCID,Apfel Ulf-PeterORCID

Abstract

[FeFe]-hydrogenases have attracted research for more than twenty years as paragons for the design of new catalysts for the hydrogen evolution reaction (HER). The bridging dithiolate comprising a secondary amine as bridgehead is the key element for the reactivity of native [FeFe]-hydrogenases and was therefore the midpoint of hundreds of biomimetic hydrogenase models. However, within those mimics, phosphorous is barely seen as a central element in the azadithiolato bridge despite being the direct heavier homologue of nitrogen. We herein synthesized three new phosphorous based [FeFe]-hydrogenase models by reacting dithiols (HSCH2)2P(O)R (R = Me, OEt, OPh) with Fe3(CO)12. All synthesized mimics show catalytic reactivity regarding HER and change their mechanisms depending on the strength of the used acid. In all presented mimics, the oxide is the center of reactivity, independent of the nature of the bridgehead. However, the phosphorous atom might be reduced by the methods we present herein to alter the reactivity of the model compounds towards protons and oxygen.

Funder

Studienstiftung des Deutschen Volkes

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3