Synthesis and Electrochemical Investigation of Phosphine Substituted Diiron Phosphadithiolate Complexes

Author:

Guseva Tatiana1,Gerschel Philipp1,Siegmund Daniel12,Apfel Ulf‐Peter12ORCID

Affiliation:

1. Inorganic Chemistry I Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany

2. Department of Electrosynthesis Fraunhofer UMSICHT Osterfelder Straße 3 46047 Oberhausen Germany

Abstract

AbstractThis work reports on ligand exchange reactions between a [FeFe] hydrogenase model containing the higher homologue (PhosDT) and phosphines selected to cover a variety of electronic properties and possible coordination modes. Additionally, the amount of the phosphines and the reaction temperature were varied to study the formation of complexes with multiple phosphines or altered binding modes. Due to steric effects caused by the position of the bridgehead, the phosphines bind preferentially at the more accessible iron centre on the phosphinate averted side. While all ligand exchanges resulted in a ligand‐specific main product at room temperature, reflux conditions induced decomposition in case of PhosDT‐(κ2‐dppe) and PhosDT‐(κ2‐dppv) and a change in the binding mode for the dppm containing complex. Moreover, we highlight two novel iron complexes obtained as side products of the reactions with dppe and dppv, while in case of dppm an additional model with two bridging phosphine ligands was generated. Finally, the six novel phosphine substituted PhosDT models were electrochemically investigated, revealing a cathodic shift compared to the starting material due to the increased electron density at the iron atoms. Moreover, the models with monodentate ligands exhibit a different CV pattern for the FeIFeI/FeIFe0 process than complexes with bidentate phosphines.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Inorganic Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3