DeNOx of Nano-Catalyst of Selective Catalytic Reduction Using Active Carbon Loading MnOx-Cu at Low Temperature

Author:

Zhu Tao,Zhang Xing,Bian Wenjing,Han Yiwei,Liu Tongshen,Liu Haibing

Abstract

With the improvement of environmental protection standards, selective catalytic reduction (SCR) has become the mainstream technology of flue gas deNOx. Especially, the low-temperature SCR nano-catalyst has attracted more and more attention at home and abroad because of its potential performance and economy in industrial applications. In this paper, low-temperature SCR catalysts were prepared using the activated carbon loading MnOx-Cu. Then, the catalysts were packed into the fiedbed stainless steel micro-reactor to evaluate the selective catalytic reduction of NO performance. The influence of reaction conditions was investigated on the catalytic reaction, including the MnOx-Cu loading amount, calcination and reaction temperature, etc. The experimental results indicate that SCR catalysts show the highest catalytic activity for NO conversion when the calcination temperature is 350 °C, MnOx loading amount is 5%, Cu loading amount is 3%, and reaction temperature is 200 °C. Under such conditions, the NO conversion arrives at 96.82% and the selectivity to N2 is almost 99%. It is of great significance to investigate the influence of reaction conditions in order to provide references for industrial application.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3