Sulfur and Water Resistance of Carbon-Based Catalysts for Low-Temperature Selective Catalytic Reduction of NOx: A Review

Author:

Shen Zhenghua12,Ren Shan3,Zhang Baoting4,Bian Weixin4,Xing Xiangdong12,Zheng Zhaoying12

Affiliation:

1. School of Metallurgy Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China

2. Research Center of Metallurgical Engineering Technology of Shaanxi Province, Xi’an 710055, China

3. College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China

4. Hanzhong Iron and Steel Co., Ltd., Shaanxi Iron and Steel Group, Hanzhong 724200, China

Abstract

Low-temperature NH3-SCR is an efficient technology for NOx removal from flue gas. The carbon-based catalyst designed by using porous carbon material with great specific surface area and interconnected pores as the support to load the active components shows excellent NH3-SCR performance and has a broad application prospect. However, overcoming the poor resistance of H2O and SO2 poisoning for carbon-based catalysts remains a great challenge. Notably, reviews on the sulfur and water resistance of carbon-based low-temperature NH3-SCR catalysts have not been previously reported to the best of our knowledge. This review introduces the reaction mechanism of the NH3-SCR process and the poisoning mechanism of SO2 and H2O to carbon-based catalysts. Strategies to improve the SO2 and H2O resistance of carbon-based catalysts in recent years are summarized through the effect of support, modification, structure control, preparation methods and reaction conditions. Perspective for the further development of carbon-based catalysts in NOx low-temperature SCR is proposed. This study provides a new insight and guidance into the design of low-temperature SCR catalysts resistant to SO2 and H2O in the future.

Funder

Natural Science Basic foundation of China

Shaanxi Province key research and development plan project

Shaanxi Province innovation ability support plan

Shaanxi Provincial Department of Education Key Laboratory

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3