Abstract
The unknown NOx distributions inside large-scale CFB (circulating fluidized bed) boilers have always hindered the economy of the SNCR (selective non-catalytic reduction) process. In this study, field tests were carried out on a typical 300 MW CFB boiler, where multi-level 316 L-made probe and Ecom-J2KN/Testo 350 analyzers were used to perform detailed two-dimensional distributions of flue gas composition at SNCR inlets for the first time. The penetration depth inside the horizontal flue pass was up to 7 m. The NOx distributions were analyzed in detail combining with the auxiliary test in the dilute phase zone. Key results show that the average O2 concentrations in #A and #C regions were 6.52% and 0.95%, respectively. The vertical NOx distributions of #A and #C SNCR inlets were similar, showing a trend of first increasing and then decreasing with peak value all appeared at 5 m depth, while the NOx distribution of #B SNCR inlet was basically increasing. Some local areas with extremely high NOx concentration (over 2000 mg/m3) were observed near the inclined edge of SNCR inlets, which has never been reported before. Based on this, the optimization of urea injections was conducted, which could save 15.7% of the urea solution consumption while ensuring ultra-low emission of NOx.
Funder
Nanjing Institute of Technology
National Key Research & Development Program of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献