Abstract
Increasing demand for CO2 utilization reactions and the stable character of CO2 have motivated interest in developing highly active, selective and stable catalysts. Precious metal catalysts have been studied extensively due to their high activities, but their implementation for industrial applications is hindered due to their elevated cost. Among the materials which have comparatively low prices, transition metal carbides (TMCs) are deemed to display catalytic properties similar to Pt-group metals (Ru, Rh, Pd, Ir, Pt) in several reactions such as hydrogenation and dehydrogenation processes. In addition, they are excellent substrates to disperse metallic particles. Hence, the unique properties of TMCs make them ideal substitutes for precious metals resulting in promising catalysts for CO2 utilization reactions. This work aims to provide a comprehensive overview of recent advances on TMCs catalysts towards gas phase CO2 utilization processes, such as CO2 methanation, reverse water gas shift (rWGS) and dry reforming of methane (DRM). We have carefully analyzed synthesis procedures, performances and limitations of different TMCs catalysts. Insights on material characteristics such as crystal structure and surface chemistry and their connection with the catalytic activity are also critically reviewed.
Funder
Engineering and Physical Sciences Research Council
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献