Electrospun Active Media Based on Polyvinylidene Fluoride (PVDF)-Graphene-TiO2 Nanocomposite Materials for Methanol and Acetaldehyde Gas-Phase Abatement

Author:

Boaretti Carlo,Vitiello GiuseppeORCID,Luciani GiuseppinaORCID,Lorenzetti Alessandra,Modesti MicheleORCID,Roso MartinaORCID

Abstract

The abatement of organic pollutants by TiO2 photocatalysis has been established as one of the benchmark applications of advanced oxidation processes for both liquid and gas phase purification. Such solution is particularly suitable for indoor air pollution where volatile organic compounds (VOCs) represent a class of chemicals of high concern for their adverse effects on both environment and human health. However, different shortcomings still affects TiO2 photocatalytic performance in terms of weak adsorptivity and fast electron-hole recombination, limiting its applicability. As a result, different strategies have been investigated over the last years in order to promote a higher TiO2 photo-efficiency. In this study we used electrospun (PVDF) nanofibers as a support for the photo catalytic system obtained by coupling graphene based materials and TiO2 during solvothermal synthesis. The resultant nanostructured membranes have been tested for acetaldehyde and methanol degradation under UV light showing an increase in the photocatalytic activity compared to bare TiO2. Such results may be ascribed to the decrease of band-gap energy and to increased electron mobility in the photocatalytic nanocomposite.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3