Abstract
The catalytic role of near attack conformations (NACs), molecular states that lie on the pathway between the ground state (GS) and transition state (TS) of a chemical reaction, is not understood completely. Using a computational approach that combines Bürgi–Dunitz theory with all-atom molecular dynamics simulations, the role of NACs in catalyzing the first stages of HIV-1 protease peptide hydrolysis was previously investigated using a substrate that represents the recognized SP1-NC cleavage site of the HIV-1 Gag polyprotein. NACs were found to confer no catalytic effect over the uncatalyzed reaction there ( Δ Δ G N ‡ ∼ 0 kcal/mol). Here, using the same approach, the role of NACs across multiple substrates that each represent a further recognized cleavage site is investigated. Overall rate enhancement varies by | Δ Δ G ‡ | ∼ 12–15 kcal/mol across this set, and although NACs contribute a small and approximately constant barrier to the uncatalyzed reaction (< Δ G N ‡ u > = 4.3 ± 0.3 kcal/mol), they are found to contribute little significant catalytic effect ( | Δ Δ G N ‡ | ∼ 0–2 kcal/mol). Furthermore, no correlation is exhibited between NAC contributions and the overall energy barrier ( R 2 = 0.01). However, these small differences in catalyzed NAC contributions enable rates to match those required for the kinetic order of processing. Therefore, NACs may offer an alternative and subtle mode compared to non-NAC contributions for fine-tuning reaction rates during complex evolutionary sequence selection processes—in this case across cleavable polyproteins whose constituents exhibit multiple functions during the virus life-cycle.
Funder
amfAR, The Foundation for AIDS Research
Volkswagen Foundation
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献