A multiscale approach for computing gated ligand binding from molecular dynamics and Brownian dynamics simulations

Author:

Sadiq S. KashifORCID,Chicharro Abraham Muñiz,Friedrich Patrick,Wade Rebecca C.ORCID

Abstract

AbstractWe develop an approach to characterise the effects of gating by a multi-conformation protein consisting of macrostate conformations that are either accessible or inaccessible to ligand binding. We first construct a Markov state model of the apo-protein from atomistic molecular dynamics simulations from which we identify macrostates and their conformations, compute their relative macrostate populations and interchange kinetics, and structurally characterise them in terms of ligand accessibility. We insert the calculated first-order rate constants for conformational transitions into a multi-state gating theory from which we derive a gating factor γ that quantifies the degree of conformational gating. Applied to HIV-1 protease, our approach yields a kinetic network of three accessible (semi-open, open and wide-open) and two inaccessible (closed and a newly identified, ‘parted’) macrostate conformations. The ‘parted’ conformation sterically partitions the active site, suggesting a possible role in product release. We find that the binding kinetics of drugs and drug-like inhibitors to HIV-1 protease falls in the slow gating regime. However, because γ=0.75, conformational gating only modestly slows ligand binding. Brownian dynamics simulations of the diffusional association of eight inhibitors to the protease - that have a wide range of experimental association constants (~104 - 1010 M−1s−1) - yields gated rate constants in the range ~0.5-5.7 × 108 M−1s−1. This indicates that, whereas the association rate of some inhibitors could be described by the model, for many inhibitors either subsequent conformational transitions or alternate binding mechanisms may be rate-limiting. For systems known to be modulated by conformational gating, the approach could be scaled computationally efficiently to screen association kinetics for a large number of ligands.Graphical TOC Entry

Publisher

Cold Spring Harbor Laboratory

Reference131 articles.

1. Advances in the calculation of binding free energies;Current opinion in structural biology,2020

2. The role of binding kinetics in therapeutically useful drug action;Current opinion in drug discovery & development,2009

3. Kinetics for Drug Discovery: an industry-driven effort to target drug residence time

4. Diffusion-controlled reaction rates

5. Superefficient enzymes;Cellular and Molecular Life Sciences CMLS,2001

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3