Climate Change Impacts on Gaseous Hydrogen (H2) Potential Produced by Photovoltaic Electrolysis for Stand-Alone or Grid Applications in Europe

Author:

Muselli Pierre-Antoine,Antoniotti Jean-Nicolas,Muselli MarcORCID

Abstract

The EU’s hydrogen strategy consists of studying the potential for renewable hydrogen to help decarbonize the EU in a cost-effective way. Today, hydrogen accounts for less than 2% of Europe’s energy consumption. It is primarily used to produce chemical products. However, 96% of this hydrogen production is through natural gas, leading to significant amounts of CO2 emissions. In this paper, we investigated PV electrolysis H2 gas (noted H2(g)) production for mapping this resource at Europe’s scale. The Cordex/Copernicus RCPs scenarios allow for evaluating the impact of climate changes on the H2-produced mass and the equivalent energy, according to both extreme RCPs scenarios. New linear regressions are investigated to study the great dependence in H2(g) produced masses (kg·yr−1) and equivalent energies (MWh·yr−1) for European countries. Computational scenarios are investigated from a reference year (2005) to the end of the century (2100) by steps of 5 years. According to RCPs 2.6 (favorable)/8.5 (extreme), 31.7% and 77.4% of Europe’s area presents a decrease of H2(g)-produced masses between 2005 and 2100. For the unfavorable scenario (8.5), only a few regions located in the northeast of France, Germany, Austria, Romania, Bulgaria and Greece present a positive balance in H2(g) production for supplying remote houses or smart grids in electricity and heat energy.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3