Abstract
In this work, the effects of arsenic (As) flux used during gallium (Ga) seed droplet consumption and the post-growth annealing on the optical, electrical, and microstructural properties of self-catalyzed molecular beam epitaxially grown tellurium (Te)-doped GaAs nanowires (NWs) have been investigated using a variety of characterization techniques. NWs using the same amount of As flux for growth of the seed droplet consumption demonstrated reduced density of stacking faults at the NW tip, with four-fold enhancement in the 4K photoluminescence (PL) intensity and increased single nanowire photocurrent over their higher As flux droplet consumption counterparts. Post-growth annealed NWs exhibited an additional low-energy PL peak at 1.31 eV that significantly reduced the overall PL intensity. The origin of this lower energy peak is assigned to a photocarrier transition from the conduction band to the annealing assisted Te-induced complex acceptor state (TeAsVGa−). In addition, post-growth annealing demonstrated a detrimental impact on the electrical properties of the Te-doped GaAs NWs, as revealed by suppressed single nanowire (SNW) and ensemble NW photocurrent, with a consequent enhanced low-frequency noise level compared to as-grown doped NWs. This work demonstrates that each parameter in the growth space must be carefully examined to successfully grow self-catalyzed Te-doped NWs of high quality and is not a simple extension of the growth of corresponding intrinsic NWs.
Funder
United States Air Force Office of Scientific Research
National Science Foundation
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献