Heterostructure axial GaAsSb ensemble near-infrared p–i–n based axial configured nanowire photodetectors

Author:

Devkota Shisir,Kuchoor HirandeepORCID,Dawkins KendallORCID,Pokharel RabinORCID,Parakh MehulORCID,Li Jia,Iyer ShanthiORCID

Abstract

Abstract In this work, we present a systematic design of growth experiments and subsequent characterization of self-catalyzed molecular beam epitaxially grown GaAsSb heterostructure axial p–i–n nanowires (NWs) on p-Si <111> for the ensemble photodetector (PD) application in the near-infrared region. Diverse growth methods have been explored to gain a better insight into mitigating several growth challenges by systematically studying their impact on the NW electrical and optical properties to realize a high-quality p–i–n heterostructure. The successful growth approaches are Te-dopant compensation to suppress the p-type nature of intrinsic GaAsSb segment, growth interruption for strain relaxation at the interface, decreased substrate temperature to enhance supersaturation and minimize the reservoir effect, higher bandgap compositions of the n-segment of the heterostructure relative to the intrinsic region for boosting the absorption, and the high-temperature ultra-high vacuum in situ annealing to reduce the parasitic radial overgrowth. The efficacy of these methods is supported by enhanced photoluminescence (PL) emission, suppressed dark current in the heterostructure p–i–n NWs accompanied by increased rectification ratio, photosensitivity, and a reduced low-frequency noise level. The PD fabricated utilizing the optimized GaAsSb axial p–i–n NWs exhibited the longer wavelength cutoff at ∼1.1 μm with a significantly higher responsivity of ∼120 A W−1 (@−3 V bias) and a detectivity of 1.1 × 1013 Jones operating at room temperature. Frequency and the bias independent capacitance in the pico-Farad (pF) range and substantially lower noise level at the reverse biased condition, show the prospects of p–i–n GaAsSb NWs PD for high-speed optoelectronic applications.

Funder

National Science Foundation

DoD HBCU/MI program

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3