Synthesis and Application of Egg Shell Biochar for As(V) Removal from Aqueous Solutions

Author:

Akram Asma,Muzammal Shazma,Shakoor Muhammad BilalORCID,Ahmad Sajid Rashid,Jilani AsimORCID,Iqbal JavedORCID,Al-Sehemi Abdullah G.ORCID,Kalam Abul,Aboushoushah Samia Faisal O.

Abstract

Arsenic in water bodies has increased to toxic levels and become a major issue worldwide. Among various treatment methods, the removal of As from polluted water with low-cost and environmental-friendly sorbents such as biochar is considered a promising technique nowadays. In a recent experiment, the treatment of As-contaminated water using egg shell biochar was studied. Various parameters affecting the sorption, such as pH, contact time, sorbent dose, As(V) concentration and the effects of anions, were also examined. The results revealed that at a pH of 4.5, a maximum sorption of 6.3 mg g−1 was observed, and the As(V) removal was 96% with an As concentration of 0.6 mg L−1 and a sorbent dose of 0.9 g L−1. At a contact time of 2 h (120 min), a maximum sorption of 6.3 mg g−1 was noted with a removal percentage of 96%. The sorption of As(V) was obtained at an optimal sorbent dose of 0.9 g L−1. The SEM-EDS data illustrated that biochar consisted of a large number of active sites for As(V) adsorption, and As appeared on the biochar surface after the sorption experiments. Moreover, XPS analyses also confirmed the presence of As(V) on the biochar surface after treatment with As-contaminated water. In a nutshell, the results of this study demonstrate that egg shell biochar has notable efficiency in the removal of As(V) from aqueous solution and that egg shell biochar could be a cost-effective and environmental-friendly sorbent for the treatment of As(V)-contaminated water, specifically in developing countries.

Funder

King Khalid University

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3