Degradation of reactive dye using heterogeneous photo-Fenton catalysts: ZnFe2O4 and GO-ZnFe2O4 composite

Author:

Nadeem Nimra,Zahid MuhammadORCID,Tabasum Asma,Mansha AsimORCID,Jilani Asim,Bhatti Ijaz Ahmad,Bhatti Haq NawazORCID

Abstract

Abstract Dyes, being potential pollutants, need alarming attention for their degradation from wastewater. Advanced oxidation processes (AOPs) are among the most effective methodology for the degradation of pollutants. In the present study, the heterogeneous photo-Fenton catalysts (ZnFe2O4 and graphene oxide based ZnFe2O4 composite) were prepared and used to study the degradation of synzol red reactive dye. The prepared catalysts were well characterized by using SEM, FTIR and XRD analysis. The effect of various parameters like pH, catalysts dosage, H2O2 dosage, effect of dye concentration and irradiation time during heterogeneous photo-Fenton processes was studied. The results showed 57% and 94% degradation of dye under optimized conditions (e.g. pH = 3, Catalysts dose = 75 mg l−1 for ZnFe2O4 and 50 mg l−1 for GO- ZnFe2O4, H2O2 dose = 27 mM and irradiation time of 60 min) was observed for ZnFe2O4 and GO-ZnFe2O4, respectively. A comparison of degradation potential of catalysts using various light sources like UV-254 nm, ambient solar light and white LED, was studied. The current findings support the application of solar and LED light for the degradation of organic pollutants in wastewater. The stability and reusability of these catalysts for the degradation of the dye were also studied. The GO- ZnFe2O4 composite showed negligible iron leaching and no considerable reduction in degradation efficiency upto six consecutive cycles of reusability. It has been found that the composite (GO–ZnFe2O4) showed enhanced degradation of dye as compared to ZnFe2O4.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3