Water Gas Shift Reaction Activity on Fe (110): A DFT Study

Author:

Liu Xiaoyan,Ma Zeyu,Gao Xinhua,Bai Miaomiao,Ma Yajun,Meng Yu

Abstract

Metal Fe is one of the phases existing on iron-based catalysts for a high-temperature water gas shift reaction (WGSR), but research on the activity of metal Fe in WGSR is almost not reported. In this work, the density functional theory (DFT) method was used to systematically study the reaction activity and mechanisms of WGSR on metal Fe (110), including the dissociation of H2O, the transformation of CO and the formation of H2, as well as the analysis of surface electronic properties. The results show that (1) the direct dissociation of H2O occurs easily on Fe (110) and the energy barrier is less than 0.9 eV; (2) the generation of CO2 is difficult and its energy barrier is above 1.8 eV; (3) H migrates easily on the Fe surface and the formation of H2 also occurs with an energy barrier of 1.47 eV. Combined with the results of Fe3O4, it can be concluded that the active phase should be Fe3O4 with O vacancy defects, and the iron-rich region plays an important role in promoting the formation of H2 in WGSR.

Funder

National Natural Science Foundation of China

Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3