A Theoretical Study of the Oxygen Release Mechanisms of a Cu-Based Oxygen Carrier during Chemical Looping with Oxygen Uncoupling

Author:

Wang Minjun,Zhang Shixiong,Xia Ming,Wang Mengke

Abstract

The Cu-based oxygen carrier is a promising material in the chemical looping with oxygen uncoupling (CLOU) process, while its performance in the CLOU is significantly dependent on the oxygen release properties. However, the study of oxygen release mechanisms in CLOU is not comprehensive enough. In this work, the detailed oxygen release mechanisms of CuO(110) and CuO(111) are researched at an atomic level using the density functional theory (DFT) method, including the formation of O2, the desorption of O2 and the diffusion of O anion, as well as the analysis of the density of states. The results show that (1) the most favorable pathway for O2 formation and desorption occurs on the CuO(110) surface of O-terminated with energy barriers of 1.89 eV and 3.22 eV, respectively; (2) the most favorable pathway for O anion diffusion occurs in the CuO(110) slab with the lowest energy barrier of 0.24 eV; and (3) the total density of states for the O atoms in the CuO(110) slab shifts to a lower energy after an O vacancy formation. All of the above results clearly demonstrate that the CuO(110) surface plays a significantly important role in the oxygen release reaction, and the oxygen vacancy defect should be conducive to the reactivity of oxygen release in a Cu-based oxygen carrier.

Funder

National Natural Science Foundation of China

General Project of Natural Science Research of Jiangsu Universities

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3