Hierarchical Graphitic Carbon-Encapsulating Cobalt Nanoparticles for Catalytic Hydrogenation of 2,4-Dinitrophenol

Author:

Hammud Hassan H.ORCID,Traboulsi HassanORCID,Karnati Ranjith Kumar,Hussain Syed Ghazanfar,Bakir Esam M.ORCID

Abstract

Cobalt hierarchical graphitic carbon nanoparticles (Co@HGC) (1), (2), and (3) were prepared by simple pyrolysis of a cobalt phenanthroline complex in the presence of anthracene at different temperatures and heating times, under a nitrogen atmosphere. The samples were used for the catalytic hydrogenation of 2,4-dinitrophenol. Samples (1) and (3) were prepared by heating at 600 °C and 800 °C respectively, while (2) was prepared by heating at 600 °C with an additional intermediate stage at 300 °C. This work revealed that graphitization was catalyzed by cobalt nanoparticles and occurred readily at temperatures of 600 °C and above. The nanocatalysts were characterized by Scanning Electron Microscopy SEM, energy dispersive X-ray analysis EDX, Raman, Xrd, and XPS. The analysis revealed the presence of cobalt and cobalt oxide species as well as graphitized carbon, while TEM analysis indicated that the nanocatalyst contains mainly cobalt nanoparticles of 3–20 nm in size embedded in a lighter graphitic web. Some bamboo-like multiwall carbon nanotubes and graphitic onion-like nanostructures were observed in (3). The structures and chemical properties of the three catalysts were correlated with their catalytic activities. The apparent rate constants kapp (min−1) of the 2,4-dinitrophenol reductions were 0.34 for (2), 0.17 for (3), 0.04 for (1), 0.005 (no catalyst). Among the three studied catalysts, the highest rate constant was obtained for (2), while the highest conversion yield was achieved by (3). Our data show that an increase in agglomeration of the cobalt species reduces the catalytic activity, while an increase in pyrolysis temperature improves the conversion yield. The nanocatalyst enhances hydrogen generation in the presence of sodium borohydride and reduces 2,4-dinitrophenol to p-diamino phenol. The best nanocatalyst (3) was prepared at 800 °C. It consisted of uniformly distributed cobalt nanoparticles sheltered by hierarchical graphitic carbon. The nanocatalyst is easily separated and recycled from the reaction system and proved to be degradation resistant, to have robust stability, and high activity towards the reduction reaction of nitrophenols.

Funder

King Faisal University

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3