Catalytic and Capacitive Properties of Hierarchical Carbon–Nickel Nanocomposites

Author:

Hammud Hassan H.1ORCID,Aljamhi Waleed A.1ORCID,Al-Hudairi Dolayl E.1,Parveen Nazish1,Ansari Sajid Ali2ORCID,Prakasam Thirumurugan3ORCID

Affiliation:

1. Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia

2. Department of Physics, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia

3. Chemistry Program, Faculty of Arts and Science, New York University Abu Dhabi (NYUAD), Abu Dhabi P.O. Box 129188, United Arab Emirates

Abstract

Hierarchically graphitic carbon that contained nickel nanoparticles (HGC-Ni (1), (2), and (3)) were prepared by the pyrolysis of three metal complexes as follows: nickel 2,2′-biyridine dichloride, nickel terephthalate 2,2′-bipyridine, and nickel phenanthroline diaqua sulfate, respectively, in the presence of anthracene or pyrene. SEM indicated that the structure of the HGC-Ni samples consisted of nickel nanoparticles with a diameter of 20–500 nm embedded in a thin layer of a hierarchical graphitic carbon layer. The EDAX of HGC-Ni indicated the presence of nickel, carbon, and nitrogen. Chlorine, oxygen, and sulfur were present in (1), (2), and (3), respectively, due to the differences in their complex precursor type. XRD indicated that the nanoparticles consisted of Ni(0) atoms. The turnover frequency (TOF) for the reduction of p-nitrophenol (PNP) increased for catalysts HGC-Ni (3), (2), and (1) and were 0.0074, 0.0094, and 0.0098 mg PNP/mg catalyst/min, respectively. The TOF for the reduction of methyl orange (MO) increased for catalysts (3), (1), and (2) and were 0.0332, 0.0347, and 0.0385 mg MO/mg catalyst/min, respectively. Thus, nickel nano-catalysts (1) and (2) provided the highest performance compared to the nano-catalysts for the reduction of PNP and MO, respectively. The first-order rate constant (min−1) of HGC-Ni (3), with respect to the reduction of PNP, was 0.173 min−1, while the first-order rate constant (min−1) for the reduction of MO by HGC-Ni (1) was 0.404 min−1. HGC-Ni (3) had the highest number of cycles with respect to PNP (17.9 cycles) and MO (22.8 cycles). The catalysts were regenerated efficiently. HGC-Ni exhibited remarkable electrochemical capacitance characteristics in the present study. This material achieved a notable specific capacitance value of 320.0 F/g when measured at a current density of 2 A/g. Furthermore, its resilience was highlighted by its ability to maintain approximately 86.8% of its initial capacitance after being subjected to 2500 charge and discharge cycles. This finding suggests that this HGC-Ni composite stands out not only for its high capacitive performance but also for its durability, making it an attractive and potentially economical choice for energy-storage solutions in various technological applications.

Funder

King Faisal University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3