Facile Synthesis of n-Fe3O4/ACF Functional Cathode for Efficient Dye Degradation through Heterogeneous E-Fenton Process

Author:

Peng Wei,Niu Wenjun,Paerhati Sidike,Guo Wenjian,Ma JinguiORCID,Hou Junwei

Abstract

In order to put forward an efficient and eco-friendly approach to degrade dye-containing industrial effluents, an n-Fe3O4/ACF nanocomposite was synthesized using the facile precipitation method and applied as a functional cathode for a heterogeneous electro-Fenton (E-Fenton) process. In particular, optimal initial pH value, current density, pole plate spacing, and electrode area were confirmed through systematical experiments as 5.73, 30 mA/cm2, 3 cm, and 2 × 2 cm2, respectively. Under such optimal reaction conditions, 98% of the methylene blue (MB) was degraded by n-Fe3O4/ACF after 2 h of E-Fenton treatment. In addition, n-Fe3O4/ACF could still decolor about 90% of the methylene blue (MB) for five rounds with some reductions in efficiency. Furthermore, results of electrochemical impedance spectroscopy and heterogeneous E-Fenton performance tests indicated that the loading of metal material Fe3O4 could enhance the overall electron transport capacity, which could accelerate the whole degradation processes. Moreover, the rich pores and large specific surface area of n-Fe3O4/ACF provided many active sites, which could greatly improve the efficiency of O2 reduction, promote the generation of H2O2, and shorten the reaction length between •OH and the pollutant groups.

Funder

Tianshan Young Scholars grant

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3