Role of the Hydroxyl Groups Coordinated toTiO2 Surface on the Photocatalytic Decomposition of Ethylene at Different Ambient Conditions

Author:

Rychtowski PiotrORCID,Tryba BeataORCID,Skrzypska Agnieszka,Felczak Paula,Sreńscek-Nazzal JoannaORCID,Wróbel Rafał Jan,Nishiguchi Hiroyasu,Toyoda Masahiro

Abstract

The titania pulp—a semi product received from the industrial production of titania white—was submitted for the thermal heating at 400–600 °C under Ar and H2 to obtain TiO2 with different structure and oxygen surface defects. Heating of titania in H2 atmosphere accelerated dehydration and crystallisation of TiO2 compared to heating in Ar. TiO2 prepared at 500 and 600 °C under H2 had some oxygen vacancies and Ti3+ centres (electron traps), whereas TiO2 obtained at 450 °C under H2 exhibited some hole traps centres. The presence of oxygen vacancies induced adsorption of atmospheric CO2. It was evidenced, that ethylene reacted with TiO2 after UV irradiation. Formic acid was identified on TiO2 surface as the reaction product of ethylene oxidation. Hydroxyl radicals were involved in complete mineralisation of ethylene. TiO2 prepared at 500 °C under H2 was poorly active because some active sites for coordination of ethylene molecules were occupied by CO2. The most active samples were TiO2 with high quantity of OH terminal groups. At 50 °C, the physically adsorbed water molecules on titania surface were desorbed, and then photocatalytic decomposition of ethylene was more efficient. TiO2 with high quantity of chemisorbed OH groups was very active for ethylene decomposition. The acidic surface of TiO2 enhances its hydroxylation. Therefore, it is stated that TiO2 having acidic active sites can be an excellent photocatalyst for ethylene decomposition under UV light.

Funder

National Science Center

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3