Abstract
Although barium titanate (BaTiO3) shows prominent dielectric properties for fabricating electronic devices, its utilization in electrochemical applications is limited. Thus, this study examined the potential of a BaTiO3-based composite in the detection of a food additive, i.e., citric acid. First, a submicron-scale BaTiO3 powder was synthesized using the solution combustion method. Then, a BaTiO3/multiwalled carbon nanotube (MWCNT) composite was hydrothermally synthesized at BaTiO3:MWCNT mass ratios of 1:1 and 2:1. This composite was used as a working electrode in a nonenzymatic sensor to evaluate its electrocatalytic activity. Cyclic voltammetric measurements revealed that the BaTiO3/MWCNT composite (2:1) exhibited the highest electrocatalytic activity. Reduction reactions were observed at applied voltages of approximately 0.02 and −0.67 V, whereas oxidation reactions were detected at −0.65 and 0.47 V. With acceptable sensitivity, decent selectivity, and fair stability, the BaTiO3/MWCNT composite (2:1) showed good potential for citric acid detection.
Funder
Kasetsart University Research and Development Institute
ASEAN University Network/Southeast Asia Engineering Education Development Network
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献